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Abstract- A Multigrid 2-D Finite Difference Time
Domain (FDTD) technique based on Multiresolu-
tion analysis with Haar wavelets is used to ana-
lyze structures such as an empty waveguide and a
shielded stripline. The results obtained are compared
with those computed using a finer resolution regular
FDTD mesh. This comparative study illustrates the
benefits of using wavelets in FDTD analysis.

I Introduction

Multiresolution Time Domain (MRTD) Technique
is a new approach to solving time domain prob-
lems. This technique uses Multiresolution Analy-
sis (MRA) to Discretize Maxwell’s equations in
time domain and demonstrates excellent capability
in solving Electromagnetics problems [1], [2]. De-
pending on the choice of basis functions, several dif-
ferent schemes result, each one carrying the signa-
ture of the basis functions used in MRA. It is also im-
portant to note that the design of an MRTD scheme
can be accomplished using one’s own application-
specific basis functions. MRTD technique using
Haar scaling functions results in the FDTD technique
[3].

Recently, an FDTD multigrid using the Haar wavelet
basis has been developed and it has been demon-
strated that such a scheme exhibits highly linear dis-

persion characteristics [3]. Motivation for this work
stems from the theory of MRA which says that a
function which is expanded in terms of scaling func-
tions of a lower resolution level, ml, can be im-
proved to a higher resolution level, m2, by using
wavelets of the intermediate levels. In other words,
expanding a function using scaling function of res-
olution level m1 and wavelets up to resolution level
m?2 gives the same accuracy as expanding the func-
tion using just the scaling functions of resolution
m?2. However, the use of wavelet expansions has ma-
jor implications in memory savings due to the fact
that the wavelet expansion coefficients are signifi-
cant only in areas of rapid field variations. This al-
lows for the capability to discard wavelet expansion
coefficients where they are not significant thereby
leading to significant economy in memory. Different
resolutions of wavelets can be combined so as to lo-
cally improve the accuracy of the approximation of
the unknown function. This, combined with the fact
that wavelet coefficients are significantonly at abrupt
field variations and discontinuities allows MRTD to
lend itself very naturally to a Multigrid capability.

In this paper, a 2D MRTD scheme based on Haar ba-
sis functions (first order resolution) is developed and
applied to solve for the Electromagnetic fields in a
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waveguide and a shielded stripline. The resulis ob-
tained are compared with those computed using con-
ventional FDTD technique. It will be shown that the
wavelet coefficients are significant only at locations
with abrupt field variations. This facilitates in ob-
taining accurate solutions by combining the wavelet
and scaling coefficients only in regions where the
wavelet coefficients are significant (discontinuities).

II The 2D-MRTD scheme

Consider the following 2-D scalar equation obtained
from Maxwell’s H-curl equation:

OE, OH.

‘5 s + GHy (D

This equation can be rewritten in a differential oper-
ator form as shown below:

Li(fi(z,y,t))+ La( folz,y,t)) =g 2)

where Ly and L, are the operators and f;(X,y,t) and
f2x,y,t) represent the electric/magnetic fields. We
now expand the fields using a Haar based MRA with
scaling functions ¢ and wavelet functions ¢ [3]. The
field expansion can be represented as follows:

Sy, 1) = [Allg(2)o(y)] + [Bll¢(z) ¢ (y)]
+Cp(z)e(y)] + [Dl[(2)d(y)]  (3)

where  [¢(X)¢(V)], [¢(x)P(W], [P)$(Y] and
[ (x)¢¥(y)] represent matrices whose elements are
the corresponding basis functions in the computation
domain of interest and [A], [B], [C], [D] represent
the matrices of the unknown coefficients which give
information about the fields and their derivatives.

Application of Galerkin’s technique leads to four
schemes which can be represented as follows:

< (98], Li(f1) + La(fz) >=< [¢4],g > $¢Scheme
<[o], Li(f1) + La(f2) >=< [¢¢], g >: ¢pScheme
< [$o], L1(f1) + La(f2) >=< [¥6], ¢ >: véScheme
< (W], Li(f1) + La(f2) >=< [¥¥], g >: YopScheme

From this system, we obtain a set of simultaneous
discretized equations. For the first resolution level of
Haar wavelets, the above four schemes decouple and
coupling can be achieved only through the excitation
term and the boundaries.

The shielded structures analyzed here are terminated
at Perfect Electric Conductors (PEC) and the bound-
ary conditions arc obtained by applying the natural
boundary condition for the electric field on a PEC as
shown below:

EP?6(2)d(y) + EFY ¢(2)9(y) + Ef P(x)dly) +
+EPYp(a)p(y) = 0....AtPEC. '

where Ef?, ES¥, E¥? and E}" are the scaling and
wavelet coefficients of the tangential electric field at
the boundary nodes.

The above equations are discretized by the use of
Galerkin’s method which results in a set of matrix
equations of order N = M+1 where M is the order
of the considered wavelet resolutions. These equa-
tions are solved simultaneously with the discretized
Maxwell’s equations to numerically apply the correct
boundary conditions.

III Applications of 2D FDTD Multi-

grid and Results

The 2-D MRTD scheme derived above has been
applied to analyze the Electromagnetic fields in a
waveguide and a shielded stripline.

(a) Waveguide: An empty waveguide with cross-
section of 12.7 x 25.4 mm is chosen. A coarse 5 x 8
mesh is used to discretize this mesh and 2D MRTD
technique was applied to analyze the fields in this ge-
ometry. Fig. 1 shows the amplitudes of the wavelet
and scaling coefficients of the electric field obtained
by using MRTD technique. From this figure it can be
seen that only the ¢¢ and ¢ coefficients make a sig-
nificant confribution to the field and that the contribu-
tion of ¥ ¢ and 1) is negligible. From the computed
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coefficients, the total field is reconstructed using an
appropriate combination of the scaling and signifi-
cant wavelet coefficients. For the waveguide chosen
here, elimination of the wavelet coefficients thathave
no significant contribution leads to 480 unknowns.
The reconstructed field obtained by this mesh has the
same accuracy as that of a 10 x 16 FDTD mesh with
960 unknowns which is in agreement with the theory
of MRA. Fig. 2 shows the results of this comparison
and demonstrates that the use of multigrid scheme
provides a 50% economy in memory.

(b) Shielded Stripline : Next, a stripline of width
1.27mm is considered. It is enclosed in a cavity of
area 12.7 x 12.7 mm so that the side walls are suf-
ficiently far away to not affect the propagation. The
strip is placed 12.7mm from the ground. A 40 x 40
mesh is used to analyze the fields in this geometry
with the 2D MRTD technique. Fig. 3 shows the de-
rived scaling and wavelet coefficients of the fields
just below the strip. From the figure, it can be seen
that among the wavelet coefficients, only ¢ makes
a significant contribution close to the vicinity of the
strip where the field variation is rather abrupt. Fig. 4
shows the comparision of the total reconstructed field
in the 40 x 40 MRTD mesh with that of a 40 x 40
and 80 x 80 FDTD mesh. From the figure it is clear
that the field computed by 40 x 40 MRTD mesh using
only the significant wavelet coefficients follows the
results of the finer 80x80 mesh very closely, demon-
strating once again the significant economy in mem-
ory as illustrated in Table 1. Fig. 5 shows the Normal
Electric field plot of the strip and the variable mesh
resulting from MRTD.,

IV Conclusion

A Haar wavelet based 2D MRTD scheme was devel-
oped and applied to analyse the fields in a waveguide
and a shielded stripline. The wavelet coefficients ob-
tained are significant only in regions of rapid field
variations. Thus the FDTD multigrid capability us-
ing MRTD technique has demonstrated significant

Table 1: Comparison of the memory require-
ments in FDTD and MRTD techniques

Technique | Unknown Coeff.
40x40 FDTD 9600
40x40 MRTD 11328
80x80 FDTD 38400

economy in memory.
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Figure 1: Amplitudes of Scaling and Wavelet Co-
efficients in a Waveguide.
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Figure 2: Comparison of MRTD, FDTD and An-

alytical Fields in a Waveguide. Figure 4: Comparison of Normal Electric Field

under a stripline using MRTD and FDTD tech-
niques.
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Figure 5: FDTD Multigrid and Field Plot of the

Figure 3: Amplitudes of Scaling and Wavelet Co- Stripline.

efficients of a Shielded Stripline.
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